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ABSTRACT

A typical storage hierarchy comprises of components witlying
performance and cost characteristics, providing multigiions
for data placement. We propose and evaluate a hierarchimal s
age system, DHIS, that uses application-level hints taridiscate
between data with different access characteristics, aed ths-
tomizes its placement and caching policies to each type.date
placement decisions in DHIS are made in an online fashion, du
ing data creation. Most existing solutions that attempustemize
data layout require moving data around, based on accesacehar
teristics. DHIS uses two kinds of information to make itsidec
sions. First, it uses knowledge about higher-lgy@hters between
blocks (for example, file system pointers) to understandrethe-
tionship between blocks and consequently, their impogatgec-
ond, DHIS defines a set of generic attributes that the highars
can use to annotate data, conveying various propertiesagih-
portance, access pattern, etc. Based on these attributds, dy-
namically decides to place the data in the hierarchy bettddor

its requirements. By doing so, DHIS solves a critical prabfaced

by storage vendors and developers of higher level storateae,

in terms of choosing the most efficient policy among manyralte
natives. Through several benchmarks, we show that DHIS& da
placement decisions improve performance significantly.

Categories and Subject Descriptors

D.4.2 [Operating System$. Storage ManagementStorage hier-
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1. INTRODUCTION

Modern large storage systems are virtually supercomputers
typical high-end storage system from EMC [7] has hundreds of
processors, tens of gigabytes of RAM and hundreds of disks. |
tune with the increasing processing power available at thveage
systems, their functional sophistication has also in@eéaJoday,
storage systems employ various forms of RAID for reliapiéind
performance, use non-volatile RAM to absorb write laterps-
form dynamic block migration for load balancing, etc. [7].20

Although storage systems have evolved significantly in seoin
the range of functionality they provide, they are still cvagmed
due to one fundamental limitation: they have little or ncoimfia-
tion about the system layers above that use the storagensyste
and thus view data simply as a flat stream of bytes. Although
some large-scale storage systems such as the NetApp FSEE]00 [
understand higher-level file structures, and export a filktesn—
like interface, a significant number of others still suppogeneric
block-based interface for reasons of flexibility [7]. Sudbrage
systems for example do not know the relative importance td,da
their access-patterns, etc. Although a lot of storagetlpukicies
such as RAID level, caching policy, etc. can be tuned for ifigec
kinds of usage, a typical storage system cannot fully ekphos
potential because it deals with a myriad of interleaved syqfedata
each with different access characteristics, and has vty itnfor-
mation to separate these types from each other.

In this paper, we presentRiscriminatingHierarchicalStorage
system, DHIS (pronounced &iis), that uses various hints spec-
ified from the higher layers about the type of the data to selec
custom policies for managing the data, such as the exact RAID
level, cacheability of the data in NVRAM, etc. DHIS also uges
formation on the logical relationship between blocks cgeeein
the form of logical pointers [16] to extrapolate its typedrhation
from one identifying block to its descendants. By being ableis-
criminate between data with varying requirements, DHISbis o
balance conflicting goals such as performance and religbilich
more efficiently than traditional storage systems.

To make informed choices on the exact layout and caching poli
cies to use for a specific piece of data, DHIS enables thedayer
above to annotate logical chunks of data veittnibutes on the data.
For instance, the file system can specify that a given filen(itied
by the top-level inode block for the file) will be mostly subjeo
small random writes. If this attribute is associated with fhe,
DHIS can ensure to not place the file in a RAID-5 format, given
the small-write performance penalty incurred in RAID-5stiead,
it may choose to place it in RAID-1 (mirroring) format.

DHIS supports five attributes:

e Importance of the data (which determines how reliably the



data should be stored).

The normal access-pattern on the data (i.e., random or se-
guential).

The expected popularity of the data (i.e., hot or cold).

Whether the data is read-mostly or write-mostly.

The expected lifetime of the data (i.e., whether it corresiso
to a temporary file).

Based on these five attributes, DHIS decides on the specific re
dundancy and reliability scheme to use for the data, and déine v
ious forms of caching to use (e.g., whether to cache the data i
NVRAM or perhaps a faster Flash storage layer) such thateise b
performance/reliability trade-off is obtained. Specifigathe cur-
rent implementation of DHIS utilizes these attributes ttomati-
cally select the RAID level a piece of data goes into, and todie
which pieces of data to cache in NVRAM.

We evaluate DHIS using a software prototype implementation
the Linux kernel. Our prototype operates as a pseudo devieerd
that interposes between the file system and the software RtD
ers. One key challenge in this prototyping environment isrisure
there is no performance interference between the hostcatialn
and the processing at the pseudo driver layer. By carefulofise
kernel isolation techniques, we separate the CPU’s and myémo
usage of the software prototype from the host applicatitimss
providing a fairly close approximation of an actual hardevaro-
totype with its own processing and memory. We believe thiat th
prototyping environment is valuable more generally forleating
other kinds of functionality in the storage system.

Using this prototyping environment we evaluate the varidiss
criminating policies of DHIS and demonstrate their effeetiess.
We show that DHIS can achieve significant performance wins by
exploiting higher-level attributes. We show that the fléiip to
choose RAID levels on a per-file basis provides significanefies
in performance, compared to the one-size-fits-all solutiommally
employed in today’s systems. We also show that by inteltigen
NVRAM caching of data that is subject to frequent random et
(e.g., meta-data blocks in a file system), DHIS greatly inapso
overall system performance. As we see in Section 5.4.4,imgch
meta-data selectively in NVRAM can improve write perforrnan
by 37% for random I/O-intensive workloads.

Overall, we find that DHIS offers an interesting design chdar
building storage systems that exploit higher level systeforma-
tion. By allowing the higher layers such as the operatingesyso
express attributes inherent only to the data and not whattitage
system should do with it, we decouple the layers; in otherdsior
the file system need not understand the specifics of the wriiltya
of low-level mechanisms and policies that today’s storagtesns
use. Depending on the specific features available withimage
system, the storage system can decide how to exploit thimkkd
extra information.

The rest of this paper is organized as follows: in Section 2,
we discuss the background of modern storage systems and type
aware storage. In Section 3, we describe the design defdils 5
and show the kind of optimizations that DHIS enables. Sactio
presents our disk prototyping framework and our prototypple-
mentation of DHIS. We evaluate our prototyping frameworkl an
our implementation in Section 5. We discuss related workeén-S
tion 6 and conclude in Section 7. Finally, in Section 8, weds
how we plan to extend this work in the future.

2. BACKGROUND

In this section, we first describe the current state of thénant-
erarchical storage and motivate the need for fine-graindidips
specific to data. We then briefly discuss the usage of poinfer-i
mation in type-safe storage which our work builds upon.

2.1 Modern Large-Scale Storage Systems

Large-scale storage systems today comprise diverse m@Esour
that include high processing power, hundreds of gigabyit&\i,
solid state storage media such as flash, and hundreds orreuen t
sands of disks [7]. Modern storage systems run complex aoétw
to provide functionality such as reliability, fault-toberce, and high
performance 1/0. One of the challenges in such storage regsie
to effectively manage the wide range of resources to prouvjole
timal performance and customizable features. Howeverpities
the advancement in storage hardware, the interface usembfor
municating with them is still simple and narrow in most saena
ios. For example, the SCSI interface supports just two mamip
tives, blockr ead andwr i t e, resulting in the storage system be-
ing mostly oblivious to higher-level information. This neskeffi-
cient resource management within modern storage systeiiffs-a d
cult problem, as storage systems cannot discriminate lesha#-
ferent kinds of information they store.

Some existing systems try to work around this problem by ex-
porting more information to higher-level software [6, 9]orFex-
ample, certain enterprise-class storage systems allolehigvel
software to choose the RAID level to use for a new volume, dur-
ing creation [10]. However, this requires that the file sgster
higher-level storage software be aware of the charadiesist each
volume, which could be totally tied to the internal architee of
the specific storage systems. For example, a storage sysigdth ¢
contain several fine-grained RAID levels, as well as deviesh
as NVRAM and solid state memory. Storage architecturesdcoul
also be different across vendors and models, and it may be&um
some to customize file systems for specific storage systeroge-M
over, the abstraction of a volume is in most cases too cageiaed
to express difference in access characteristics across fileere-
fore, it is more flexible and straight-forward to communéahe
attributes associated with data to the storage system, edritid
storage system decide the policies based on its internbitace
ture.

2.2 Type-Awareness in Storage

Recently, there have been efforts to bridge the informagjap
between storage systems and higher level layers using Cibgsed
Storage devices (OSD) [14] and Type-Safe Disks (TSD) [16}ilgV
OSDs fundamentally change the view of storage systems lyrexp
ing an object interface, TSDs extend the traditional blatkiface
by introducing the notion of logical pointers between bkecln this
section, we briefly describe TSDs which form the basis for BHI

TSDs aim at communicating file-system—level block pointers
the disk system, enabling useful functionality at the digkware
level. File system pointers indicate logical relationshigetween
disk blocks. For example, a per-file meta-data block (suchras
Ext2 inode block) has pointers to data blocks belonging tdea fi
At the disk-level, pointers help infer at least three keycpie of
information:

1. Logical grouping of blocks. For example, the set of blocks
pointed to by a per-file meta-data block can represent al dat
belonging to a file.

2. Relative importance of blocks. Blocks with outgoing point-
ers impact the reachability of one or more other blocks, and



hence are more important. For example, meta-data blocks in a transparent manner using higher-level hints about dath

are more important than regular data blocks.

3. Blockliveness. Current disk systems cannot differentiate used
and unused blocks. With pointers, a disk system can infer
that blocks without any incoming pointers are unused (as
they cannot be reached).

Information about higher-level pointers enables a diskesys
to provide useful functionality that cannot be provided lggent
day’s disks. For example, a TSD can perform intelligent ghe-
ing of blocks based on logical relationships indicated bintsos
(when a meta-data block is accessed, blocks pointed to gnit ¢
be prefetched). Knowledge of relative importance of blocds be
used to adopt better redundancy schemes for importantflock
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The architectural differences between a regular disk an@&@a T
are shown in Figure 1. TSDs export an extended block-based in
terface to support pointers, and to perform free-space gemant
at the disk level. Disk primitives to allocate blocks and iadd
or removing pointers can be used by higher-level softwach s1$
file systems to communicate the necessary information tdidie
TSDs also perform automatic garbage collection of blocks sine
not reachable through any pointer, thereby obviating tredrfer
the higher-level software to manage free blocks explicHgr ex-
ample, the Ext2TSD file system [16] is a modified Ext2 file syste
that exports pointer information to a TSD.

3. DESIGN

In this section, we describe the design of DHIS in detail and
discuss the optimizations that DHIS achieves by using itghel
attributes on data. In Section 3.1, we describe the typaeahia
erarchical storage setup that DHIS incorporates and itsrgdba-
tures. In Section 3.2, we present the set of well-defineddritgvel
attributes that DHIS supports. Finally, in Section 3.3, \Wevs the
kind of optimizations that these attributes enable.

3.1 A Hierarchical Storage Architecture

DHIS’s architecture comprises volatile and NVRAM, as wall a
several individual disks aggregated using standard RAVBI¢&e In
our design, we particularly consider the three most comgnoséd
RAID levels: RAIDO (striping without redundancy), RAID1 (m
roring), and RAID5 (striping with a parity block per stripejhese
three RAID levels have varying characteristics in terms effqr-
mance, reliability, and cost per gigabyte. We aim to useelhes
sources within a single storage system and manage theneeffici

access semantics. DHIS exports a flat namespace to higletr-le
storage software such as file systems, and aggregates thgesto
capacity available in the different RAID levels internalljhe ar-
chitecture we use while designing DHIS is shown in Figure 2.

In the rest of this section, we detail the basic design aspafct
operating such a hierarchical storage system in a typeeastar-
age setup as described in Section 2.2.

3.1.1 \Virtualizing the Block Layer Namespace

Although DHIS manages several disks and RAID levels inter-
nally, it appears like a single disk system to higher-lewdtvgare.
For this purpose, it maintains a block-address virtuaiiratayer
that contains an address translation taBi€ABLE, which maps
the global logical block namespace to individual disk-$iiead-
dresses. A physical address contains two parts: a disk acalev
identifier (e.g., an internal RAID device), and a physicabdi
number within that device. Th&TABLE is looked up for every
1/0 request, and is updated whenever blocks need to be reedap
to different devices. DHIS stores thETABLE and other book-
keeping structures in non-volatile RAM and periodicallyites them
to the disk. Note that inbuilt non-volatile memory has beeiiey
common in high-end storage devices for a while, and recéinily
being used even for regular hard drives [18].

3.1.2 Block Allocation

DHIS performs free-space management at the firmware level,
thereby freeing higher-level applications from maintagiinfor-
mation solely for placement of data on disk. Block allocatie
done using an explicil | oc_bl ock disk primitive. This is im-
portant for two reasons. First, higher-level software iaware of
internal disk characteristics and hence cannot make dodes-
sions about block locality especially when the storageesystas
a complex hierarchy of disk media internally. For example,
Ext2 file system’s allocation algorithm assumes that blaghese
logical block numbers are contiguous are physically cartig as
well. This may not be true in a hierarchical storage systeeco8d,
by managing free-space on disk, DHIS can exploit its knogded
of block-liveness to proactively perform operations suslaggres-
sive replication of hot read-only data, to improve perfonoa and
reliability. The block allocation API optionally takes anhiblock
number to allocate the new block closer to it.

One of the main design goals of DHIS is to enable placement of
data blocks at the right RAID-level based on higher levehdxdar-
acteristics such as access patterns, relative importatceT here-
fore, whenever a block is allocated by the higher-level dis& has
to assign a logical block number for it in the global block reem
pace, and then allocate a physical block in one of the RAIDocgsv
To enable this, DHIS maintains an allocation bitmap for thgi-|
cal namespace and separate bitmaps for every underlyirgqathy
device. The block-allocation primitive performs two stepge to
allocate a logical block number and the second for a phybicak
number in one of the lower disks. DHIS addsT&ABLE entry
whenever a new block is allocated.

3.1.3 Pointer-Based Optimizations

Like a TSD (described in Section 2.2), DHIS includes two disk
primitives, one to create logical pointers between blocaed
CREATE_PTR( sr chl k, dest bl k) , and the other to delete log-
ical pointers calledELETE_PTR( sr cbl k, dest bl k). These
primitives can be used by higher-level software to commateic
pointer relationship to DHIS . DHIS maintains all pointerithare-
spect to the global logical block hamespace, and not theigzdlys
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blocks. This allows DHIS to relocate physical blocks traarsptly
without affecting the stored pointer information.

By using pointer knowledge, DHIS performs three key optimiz
tions as follows:

1. All higher-level meta-data blocks (identified as thos&-ha

ing outgoing pointers) are placed in the RAID level of high-
est reliability and best random-access performance. Bhis i

file, a file system just needs to set an inheritable attrituted per-
file meta-data block, and DHIS automatically inherits theitaite
to all blocks belonging to that file.

There have been previous efforts to infer the charactesisif
blocks at the disk level without an explicit interface, byngshis-
tory of accesses [20] or block correlations [13]. Howevbese
methods are quite limited in the range of characteristiey tten
infer, and often end up being too complex. For example, afjho

because meta-data blocks are more important and accessedt is possible to identify hot and cold blocks using accessany,

more frequently compared to regular data blocks.

In our information such as the relative importance of blocks wibpect

setup, we use RAID1 for this purpose. Note that as the phys- to higher-level applications cannot be inferred easily.efEfore,
ical destination of blocks are determined at the time of-allo DHIS provides an explicit interface for communicating a et
cation, we do not have information about outgoing pointers well-defined hints or attributes that can be set by highestlstor-
for a newly created block and hence we cannot differenti- age software such as file systems.

ate between data and meta-data for a newly allocated block.
Only when the first outgoing pointer is created from a block,
DHIS can identify it as a meta-data block. Therefore, DHIS
performs dynamic relocation of meta-data blocks to RAID1

3.2.1 Attribute Interface

Higher-level software can set attributes using an expté&k
primitive, DHI S_.SETATTR, by passing a bitmap representing the

as and when the first pointer is created from a block.

2. As meta-data blocks need to be written to disk frequewity f
reliability reasons, DHIS attempts to absorb the writerage

of these blocks by caching writes in NVRAM. As meta-data
blocks constitute a small percentage of the total size of sto
age, NVRAM caching is beneficial. DHIS flushes out the

attributes. Note that attributes in DHIS are normally seinteta-
data blocks, and they qualify the characteristics of allckéoin
the pointer tree starting from that block. For example, ifeat2
file system needs to specify the access pattern for a file edse
to set an appropriate attribute to the corresponding inddekb
DHIS automatically groups blocks in the sub-tree and assesi
the attribute to all such blocks. The following are the htites that

NVRAM contents to RAID1 in configurable periodic inter-
vals of time and also when the device is idle.

. DHIS exploits its knowledge about block-liveness (diffe
entiating between used and unused blocks) to remove dead
blocks (those freed by the file system) from the NVRAM
cache and the regular disk cache, for improving the cache
utilization.

3.2 Attributes

In this section we describe the set of hints or attributesttitgner-
level software such as file systems can associate with digk®ln
DHIS. Note that knowledge about pointers at the disk levela
DHIS to inherit attributes of a meta-data block to the sdetof
data blocks that it points to. For example, to set an atteibot a

DHIS supports:

e | MPORTANCE: determines the relative importance of a data
item. Currently DHIS supports this as a Boolean attribute
which indicates that an entity is more important than oth-
ers. This can potentially be extended to support more fine-
grained levels based on the diversity in internal storagd-ha
ware. Applications, for example, can set this attribute for
source files or documents that need to be preserved with the
highest level of reliability.

e ACCESS_PATTERN: determines if the set of blocks (belong-
ing to the sub-tree of a meta-data block) will be accessed
randomly or sequentially. This attribute takes two values:
random, or sequential. Applications can set this attrilbate



files they own based on their access pattern. For example, ahow information about temporary files can aid in reducingkdis

simple classification of files based on their types can enable

a file system to mark video files as sequential and database

index files as random.

HOT/ COLD: specifies the frequency in which the particular
data item will be accessed. This takes either of these values
hot, and cold. Generally applications can set archival data

as cold and frequently updated files such as database write-

ahead log files as hot.

READ- MOST/ V\RI TE- MOST: indicates whether a data item
will be mostly read or written. For example, binary files such
as/ bi n/ | s in Unix will be mostly read and will be updated
only infrequently. Similarly, file system journals or datedie
log files will predominantly be written.

TEMPORARY: this is a Boolean attribute that indicates whether
a data item is temporary (i.e., short-lived) in nature. Bor e
ample, object files generated by compilers and intermediate

fragmentation.

3.3.1 Choosing Optimal RAID Levels

The three RAID levels that DHIS manages have different per-
formance and reliability characteristics. In this sectiare first
describe the key characteristics of RAID levels in DHIS aneht
we detail the policies DHIS adopts to choose the right RANzle
to place data.

Characteristics of RAID Levels.

RAIDO performs plain striping across several disks withaoy
redundancy and hence it has the lowest reliability level rgritie
three. However, in terms of performance, RAIDO is good for se
quential and random read-write workloads. This is mainlgaese
1/0 operations get parallelized across the individual sliskhen
datais striped. In terms of cost per gigabyte, RAIDO is theaglest
as there is no redundancy and the storage capacity is thefdhen o
individual disk capacities.

files generated by applications such as download managers RAID1 mirrors data across two or more disks. As the disks con-

can be classified as temporary.

The above attributes are the ones that have been currently im

plemented in the DHIS prototype. In Section 8, we discuss how
we plan to extend this set of attributes. Storage softwach s1$
file systems can set attributes for appropriate meta-datk®| us-
ing application-specific information. For example, filetgyss can
export an interface to user applications to set attributéiseagran-
ularity of files or directories. In such cases, file systemgehae
responsibility to transform logical abstractions (sucHikes) into
corresponding meta-data blocks and to pass the attribufeBlLS.
For example, an Ext2 file system can export act | that user ap-
plications can use to set attributes to a file identified byth pame.
Ext2 can then issue BHI S_SETATTR call with the attribute, for
the inode block corresponding to the path name.

3.2.2 TheExt2DHISFile System

We developed an attributes-aware file system to support DHIS
as an extended form of the Ext2TSD file system [16]. Ext2TSD
is a modified Ext2 file system that supports TSD devices. There
are two main differences between a regular Ext2 file systeth an
Ext2TSD. First, Ext2TSD does not perform free-space manage
ment, and allocates blocks using the TSD disk API. Secondnwh
ever a hew pointer is added or removed for a meta-data blowh(s
as an inode), Ext2TSD issues the correspond@REATE_PTR or
DELETE_PTR calls to the disk to communicate the pointer.

We have developed Ext2DHIS as an extended Ext2TSD file sys-
tem that includes anoct | interface for user applications to set
attributes to files or directories. Ext2DHIS issu@d S_SETATTR
calls to the storage system whenever attributes need tothar se
changed. In addition to this, we have developed a simplensetie
set basic attributes automatically for known file name esitars, at
the file system level. For example, Ext2DHIS automaticalbrks
files with extensions c, . cpp, etc., as important as these may be
source files. This provides a simple means to set basic atisb
without the need to modify user-level applications.

3.3 Attribute-Based Optimizations

In this section, we describe the optimizations that DHISeads
using the well-defined set of attributes listed above. Fivstpresent
the method we use to choose the right RAID level for a givea dat
item. Second, we describe how better NVRAM utilization can b
done by choosing the right candidates to cache. Third, waildet

tain identical data at all times, data reliability is betsrit can tol-
erate N-1 disk failures where N is the number of mirrored gidk
terms of performance, RAID1 has similar characteristiasbioth
sequential and random I/O. Reads are faster than writesaals re
can be parallelized across the N disks. Write speed is initie
that of a single disk, because for every write, all disks havbe
updated, but in parallel. RAID1 has the highest cost perlyita
as the total capacity of the drives is halved due to mirraring
RAID5 stripes both data and parity information across ttoee
more drives. In principle it is similar to having a single ded
cated parity drive, but parity blocks are distributed asralsdrives.
RAID5 can recover from single disk failures and hence haspasm
rable reliability to a two-disk RAID1. Read performance iAIR5
is similar to that of RAIDO. However, for small random writes
RAIDS5 performs poorly. This is because, for small writesttha
do not span a complete stripe, computation of new parityliag
reading the old contents of the data block and the paritykblte
terms of cost per gigabyte, RAID5 is the second best among the
three, as there is a single parity block for a stripe.

RAID Placement Policies.

In addition to placing all meta-data blocks in RAID1 (as de-
scribed in Section 3.1.3), DHIS also adopts placementigslizased
on higher-level attributes. Table 1 shows the placemeritipsl
that DHIS adopts for each combination of attributes. Thegri
ples that we use to decide the RAID level for a data item are in
tune with the performance and reliability characteristissociated
with each RAID level as described above. Note that for daah th
is | MPORTANT andCOLDwe use RAIDS irrespective of its access
pattern and read-write characteristics because they ang ¢ be
accessed rarely and hence performance is not a signifiazot.fa

3.3.2 Choosing Candidates for NVRAM Caching

DHIS chooses candidates for NVRAM caching to maximize the
number of absorbed writes through NVRAM. It chooses all meta
data blocks as candidates as described in Section 3.1.8usec
meta-data blocks are frequently written and have randonesscc
patterns. Similarly, it also chooses blocks with the coration of
attributesHOT, WRI TE- MOST, andRANDOM as these are expected
to benefit the most from NVRAM caching. We do not choose se-
quential workloads as candidates and in general they doemafl
much from caching.

DHIS manages NVRAM buffers using a simple mechanism that



| MPORTANT | ACCESS_PATTERN | READ/ WRI TE- MOST HOT/ COLD RAID Levels
No Any Any Any 0,51
Yes Any Any Cold 51,0
Yes Not set Not set Not set or Hot 510
Yes Random Not-set or Write-most Not set or Hot 1,5,0
Yes Random Read-most Not set or Hot 51,0
Yes Sequential Any Not set or Hot 51,0

Table 1: RAID placement heuristics. The order of RAID levels listed in the last column is the desired order for

each combination of

attributes. DHI S triesthe next level when allocation fails in one of the levels.

caches writes when the corresponding block is a candidateaa
asynchronous process that flushes NVRAM buffers to disk when
ever the disk is idle. When all buffers in the NVRAM are dirty,
DHIS passes all subsequent writes to other candidatestlglitec
disk, until NVRAM buffers are flushed out.

3.3.3 Reducing Disk Fragmentation

A fragmented disk can yield poor performance for large files t
are accessed sequentially. This is because when therelpifeagn
ments of free-space left for allocation, large files may emdpread
out across the disk resulting in unnecessary disk seekspdiary
files that get created and deleted within short intervalieé could
exacerbate disk fragmentation, thereby seriously afigdfie per-
formance of large files under some scenarios.

DHIS deals with temporary files in a different manner to resluc
disk fragmentation. As DHIS is responsible for free-spaemage-
ment, it allocates space for block groups with TEVPORARY at-
tribute set, in a segregated portion of RAID level 0 (grouplotks
at the end of the device). For blocks that are not temporaflD
never allocates space from this segregated area. Thisesnthat
temporary files that get created and deleted never intewfithethe
allocation of regular files, thereby significantly reducitigk frag-
mentation.

4. |IMPLEMENTATION

In this section, we first describe our generic disk functlitpa
prototyping framework, DPROTO, that we built for the Linugrk
nel 2.6.15. We discuss the implementation details of DHI&r ov
DPROTO.

4.1 DPROTO

‘ File System ‘

‘ Generic Block Layer

[ DPROTO Request Layer }

Processor 1

Processor 2

‘ Service Thread

Preallocated

v Memory pool

RAID 1
driver

RAID O
driver

RAID 5
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Figure 3: DPROTO Architecture

arate thread bound to an isolated CPU. Disk I/O requestggiene
from the file system reach the upper layer of DPROTO, whictsadd
the request to a shared queue. The lower layer servicesssque
from the queue and eventually passes it down to physicahgtor

We developed DPROTO as a pseudo-device driver that stacksAny disk-level functionality such as compression would fza-h

on top of one or more lower-level disk or software RAID driser

dled by the lower-level service thread and hence runs inclated

in a single machine. One of the main challenges in developing CPU. All memory allocations done by both layers of DPROTO use

DPROTO is isolating the resources consumed by componeats th
are supposed to go inside the disk firmware if it were a real im-
plementation. For example, if the functionality being ptgped

is a disk-level data compression technique, the part of DRRO
that performs compression has to consume resources thet@re
pletely isolated from that used by applications and file eyst,
which is difficult in a single machine setup.

While developing DPROTO we aimed at isolating key resoyrces
CPU and memory, between disk-level functionality and highe
level applications. For CPU isolation, we use a multipreoes
setup and ensure that disk-level functionality always ggexuted
in an isolated processor. For memory isolation, we impleegtan
isolated preallocated memory pool and ensured that disktifom
ality never accesses memory beyond the preallocated range.

Figure 3 shows the architecture of DPROTO. We implemented
the pseudo-device driver as two layers, the upper layeringnin
the context of the file system, and the lower layer running sepa

the preallocated memory pool. Therefore, DPROTO requjpesis
fying the total memory requirement for a given functionalbiefore
hand.

To test the performance of a disk-level functionality ptgped
using DPROTO, the comparison reference can be run with ane pr
cessor disabled and with the appropriate size of memonyiprea
cated. For example, if a compression disk system is comparad
regular disk system for a particular workload, the reguliakdun
of the workload has to be done with one processor disabledhend
preallocated memory equal to the memory requirement ofdhe-c
pression disk. With this procedure, the comparison becdiaies
and closely represents the results of a real implementation

Our implementation of DPROTO had 5,790 lines of new kernel
code and 350 lines of user-level code.

4.2 DHIS Prototype
We implemented a prototype of DHIS using our DPROTO frame-



work. We preallocated the size of each of our data-strustdrBABLE,
NVRAM cache, allocation bitmaps, attribute and pointer agat
ment structures, and request queue, as a function of tHetotage
capacity. For the three RAID levels, we stacked DPROTO omfop
the regular Linux software RAID drivers for RAIDO, RAID1, dn
RAIDS5. Our prototype of DHIS had 2,150 lines of kernel code in
addition to DPROTO.

5. EVALUATION

We evaluated the performance of DPROTO and our prototype
implementation of DHIS to get an estimate of the benefitsevetd
by attribute-based RAID placement and NVRAM caching. In-Sec
tion 5.1, we present our evaluation setup. In Section 5.2dere
scribe the benchmarks that we used. In Section 5.3, we dishas
performance characteristics of our prototyping framew&RROTO.
Finally, in Section 5.4, we show evaluation results for DHFSAID
placement for several micro-benchmarks, an OLTP worklazdi a
a Kernel Compile workload. We also present evaluation tesat
DHIS’s NVRAM caching mechanisms.

5.1 Evaluation Setup

For all benchmarks, we used a 2.8GHz Xeon machine with 1GB
RAM, and 6 Maxtor SCSI disks with capacities of 250 GB each,
rotational speed of 7,200 RPM and with 8MB cache. We used Fe-
dora Core 6, running a vanilla 2.6.15 kernel.

To ensure a cold cache between benchmark runs, we unmounted

all involved file systems between each test. We ran all t¢déezat
five times and computed 95% confidence intervals for the mean
elapsed, system, user, and wait times using the Studaistribu-
tion. In each case, the half-widths of the intervals wers tbsn
5% of the mean. Wait time is the elapsed time less CPU time used
and consists mostly of /O, but process scheduling can dfsota
it.

We observed disk statistics fronpr oc/ di skst at s for each of
our benchmarks and used it to analyze the reasons behina-our r
sults. Disk statistics provide the following informatiobserved
by the disk for each benchmark we ran: number of read 1/O re-
quests (i o), number of write I/O requestsw o), number of sec-
tors read (sect ), number of sectors writterwect ), number of
read requests mergednier ge), number of write requests merged
(wrer ge), total time taken for read requestsuge), and the total
time taken for write requestsuise).

5.2 Benchmarks and Configurations

We used the following benchmarks: Postmark [19], a series of
micro-benchmarks, FileBench [1] and Kernel Compile. Wedks
each of them below.

We used Postmark [19], a popular file system benchmarkirlg too
to test the performance of our prototypes. Postmark is h@®rsive
and stresses the file system by creating a large number of fiesl
and then performing a series of file system operations suclias
rectory lookups, creations, and deletions on them. A langa-n
ber of small files is common in electronic mail and news server
where multiple users are randomly modifying small files. tRask
mostly generates a combination of small random reads artdsyri
and hence we use this for testing the performance of our imgfe
tations, under random workloads. The working set of a Pastma
benchmark is determined by the number of files to be creaied in
tially, and their size range. For all runs of Postmark, wedusie
sizes ranging from 400KB to 600KB with the base number of files
set to 3,000. We chose these parameters in order to creasanre
ably large working set for the test machine (1GB RAM). We have
mentioned the exact configuration of Postmark used for ezsth t

along with the respective test results.

We also ran a series of micro-benchmarks to test the characte
istics that Postmark does not cover. For example, Postnaek d
not evaluate sequential 1/0 performance and overheadsafge |
file workloads. Micro-benchmarks also isolate the overkefad
specific operations, and hence give a clearer picture of tiee- o
heads. We developed a user-level tool that generates orfee of t
following workloads: random read, random write, sequéméad,
and sequential write. For all runs, we used 4KB read or writes
on a single 1.5GB file. For the sequential benchmarks (redd an
write), we performed sequential 4K I/O on the 1.5GB file 5 tane
totalling to 7.5GB of 1/0. For random read and write benchkaar
we performed 20,000 and 150,000 4K 1/O respectively.

We used FileBench [1] to emulate an OLTP application. Fnall
we used the linux kernel 2.6.28 sources for the Kernel Canpil
workload. We mention more details on the test setup when we
discuss the benchmark results for the OLTP and Kernel Campil
workloads in Section 5.4.2 and Section 5.4.3 respectively.

5.3 DPROTO Overheads
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Figure 4: Postmark resultsfor DPROTO vs. aregular disk

We evaluated the performance of DPROTO framework as a null
layer that stacks on top of a regular disk. We ran Postmarkfor
different configurations on an Ext2 file system mounted omtiie
DPROTO layer, and compared it with Postmark run on a regular
disk. Figure 4 shows the overheads of DPROTO compared to a
regular disk. The overall elapsed time overhead of DPROT® wa
only 3.6% compared to regular disks. This is contributedtiydxy
an increase in wait time, due to an additional level of inclign in
the DPROTO request service queue.

5.4 DHIS Results
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Figure5: Postmark results for Ext2DHIS over DHIS compared to Ext2
over plain DPROTO

We evaluated the performance of our prototype implemeoriati
of DHIS and our optimizations for RAID placement and NVRAM
caching.



Figure 5 shows the overheads of DHIS over regular DPROTO.

We configured DPROTO to preallocate the same amount of mem-

ory that DHIS required for storing its data-structures (¥53. Al-
though the elapsed times for both runs are similar, DHIS Fgtseh
system time (13 secs vs. 49 secs) and lower wait time (449vsecs
416 secs) compared to regular DPROTO. The system time s&rea
is due to two reasons. First, Ext2DHIS issues ioctls to theeigs-
device driver to communicate pointer information, conitihg the
major component of system time. Second, the shared queue-is p

close to the fastest of the two RAID levels. Note that for the s
quential write workload, DHIS performs 16% better than RAID
This is because DHIS places all meta-data blocks in RAID1 for
maximizing reliability and better performance (as metéaddocks

will mostly be accessed at random). By placing meta-datekisio

in RAID1, DHIS has better sequential write characteristassran-
dom meta-data updates (such as updating the inode) getbatiso
by RAID1 while writing to a large sequential file on RAID5.

tected by a spin lock and hence minor contention causes a busy 5.4.2 OLTP Workload

wait resulting in increased system time. The reduced waitti
is because of better spatial locality caused by the dis&tlelock
allocation scheme used by DHIS (compared to file-systeraady
location in Ext2). The scheme co-locates blocks in a greaslyion
without taking into account future file growth.

5.4.1 RAID Placement Optimizations
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Figure 6: Postmark results for Ext2DHIS over DHIS compared to Ext2
over plain DPROTO on RAID1 and RAID5

To evaluate the benefits of the RAID placement optimizations
performed by DHIS, we used Postmark and micro-benchmarks.
For all benchmarks, we observed the time taken for the warklo
on regular DPROTO stacked over individual RAID1 and RAID5
devices and compared them with DHIS. While running the work-
load over DHIS, we set theMPORTANT and ACCESS_PATTERN
attributes, so that DHIS would place them in the optimal RAID
level.

As Postmark generates mostly a random workload, we ran it
with the RANDOMattribute set. For micro-benchmarks, we set the
SEQUENTI AL and RANDOM attributes for sequential and random
reads and writes respectively.

Figure 6 shows the Postmark results for DHIS as compared to
DPROTO on individual RAID1 and RAID5. As evident from the
figure, DHIS performs closer to regular RAID1 as it placed the
Postmark working set on its RAID1 hierarchy. DHIS has anstaip
time overhead of 25% compared to regular RAID1 although DHIS
places all data on RAID1 for this benchmark. This is due to two
reasons. First, Postmark creates and deletes a large nuifrfiles
and hence results in a large amount of pointer operationsagnd
tribute updates. This results in increased system time ¢&8 gs.

49 secs) as seen from the figure. Second, as pointer operatien
synchronous in nature, they block until the DPROTO senlicead
handles them. This results in increased wait time (386 sec452
secs). The overheads are more pronounced for the Postmakk wo
load because Postmark is an extreme case of an I/O-intemsike
load. In most common workloads, DHIS performs much closer to
RAID1 for random workloads (as shown in the micro-benchmark
results below).

Figure 7 shows the micro-benchmark results for RAID place-
ment. As shown in the graphs, under all cases, DHIS performs

FileBench [1] is a framework for file system workloads. It sise
high level workload language to model the 1/0 behavior arbot
characteristics of desired applications. We used FileBeéaem-
ulate an OLTP workload. This workload performs transaction
a file system using an 1/0 model from Oracle 9i. This workload
tests for the performance of small random reads and writegita
files and synchronous writes to a log file. It launches a config-
urable number of reader processes, ten writer processesyor
chronous writing, and a log writer process. The emulatiatuides
the use of Intimate Shared Memory (ISM). ISM is a special kind
of shared memory used by DBMS vendors to maximize 1/O per-
formance. Because the writes to data files are asynchromiogs,
throughput is limited mostly by the read performance. Fég8fa)
shows the I/O throughput achieved using DHIS for a varyingnnu
ber of reader processes. The figure also compares thesejltimaiu
values with those achieved using DPROTO over RAIDO, RAID1
and RAID5. The number of reader processes is varied betwgen 2
and 100 in increments of 25 with 10 asynchronous writer psses
and a log writer process. The working set for the workloadsists
of 10 data files each of size 250 MB and a log file of size 250 MB.
These file sizes ensure that we have a reasonably large \y@&in
for the test machine (1 GB RAM). While benchmarking DHIS, we
ran FileBench with the attributdsSMPORTANT and READ- MOST
and ACCESS- PATTERN set toRANDOMon the data files. We ob-
serve that DHIS performs close to RAID5 as it chooses RAID5S
for the said category of data files. RAIDO has higher throughp
relative to RAID1, RAID5, and DHIS for this workload because
of the high concurrency in disk accesses but is not applcédl
important data. Figure 8(b) shows the latency per operaising
the same configurations as above. Again, DHIS performs ¢tose
RAIDS5. Further, the relatively higher rate of increase itetecy val-
ues for RAID1 with increasing number of reader processesisho
that RAIDO, RAID5, and DHIS handle 1/O concurrency much bet-
ter than RAID1 for this workload. In summary, setting approp
ate attributes on data files for the OLTP workload enablesDHI
to make the most efficient data placement decision and iteithde
performs close to RAIDS5.

5.4.3 Kernel Compile Workload

To evaluate the benefits of DHIS when upper layers such as file
systems or applications set attributes on files based onyfikest
we ran a kernel compile workload for four cases. For each,¢hse
sources directory is based on RAID1 storage that is sepamte
the storage for the build directory. The build directory wam-
figured to be based on one of RAIDO, RAID1, RAID5, or DHIS.
The upper layer (in this case, the ext2DHIS file system) setat-
tribute TEMPORARY on binary files. DHIS processes the attribute
and places all binary files in RAIDO storage. Figure 9 shoves th
total number of sectors written in each case. While RAID1 and
RAIDS5 write 82% and 48% more sectors than DHIS, DHIS writes
7% more sectors than RAIDO. The overhead of DHIS relative
to RAIDO is explained by the fact that DHIS places all metadat
blocks in RAID1. Figure 10 shows that all four cases compare
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almost equally well in terms of performance. Infact, DHIS lza
system time overhead of about 2% because of pointer opesatio
and attribute updates. The lack of apparent performancefiters
because a kernel compile is a CPU-intensive workload. Hewev
other benefits such as power savings and reduction in baclarp o
head are apparent if we consider the fact that relatively I&3 is
being performed and the possibility that RAIDO storage neeid
be backed up.

5.4.4 NVRAM Caching
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Figure 11: Postmark results for Ext2DHIS over DHIS with selective
NVRAM caching enabled (right) compared to Ext2 over DHI S (left)

To evaluate the benefits of caching selected candidates RAW,
we compared ext2 over DHIS with ext2DHIS over DHIS. When
running ext2DHIS over DHIS, we enabled selective NVRAM dagh
for DHIS. In both the cases, the file systems were mounted in
synchronous mode. Using the pointer information exportgd b
Ext2DHIS, DHIS chooses all meta-data blocks as candidates f
NVRAM caching and hence for a synchronous workload most of

10

the meta-data block writes will be absorbed by the NVRAM.-Fig
ure 11 shows the benefits of selective NVRAM caching. For this
run, we configured Postmark to create 1,000 files with sizeging
from 10KB to 20KB, and 2,000 operations. We used this smaller
configuration as we ran this workload with a synchronous nhoun
of the file systems. As seen from the figure, caching metastata
lectively in NVRAM can improve write performance signifidin
(37%) for random 1/O-intensive workloads.

In summary, we have shown through several benchmarks and
workloads that by setting appropriate attributes aboua dsgge,
access patterns and importance, DHIS can be made to perform
substantially better than traditional storage systemsplaee data
without the knowledge of such attributes.

6. RELATED WORK

Our work builds on the work on type-safe disks by Sivathanu et
al. [16] which first proposed the notion of communicatingpimfia-
tion on logical pointers to the disk system, thus enablirmgdisk to
know about the higher level structure of data. Like typeesifks,
Object-Based Storage devices (OSD) [14] also provide a&ridb-
vice interface, improving device intelligence. OSDs suppbe
notion of attributes on objects through which higher-lesaftware
can communicate object properties to the storage devidass, &
hierarchical storage system like DHIS can also be built gnab
OSDs.

DHIS can help automate storage administration as envisaged
Self-* Storage [8]. That work proposes the notion of supss,
workers, and routers for automated administration. Warleee re-
sponsible for storage allocations based on observed wamtkloAl-
though the Self-* storage architecture would work with wenkas
block stores, they can work better with intelligent storagstems
like DHIS.

Karma [22] provides for an informed management policy in the
context of multilevel caches. Like DHIS, Karma leveragegliap-
tion hints to make informed allocation decisions. Whereasnka
focuses on improving cache hit rate, DHIS enables RAID kvel
to occupy optimal positions in the storage hierarchy defendn
data attributes.

The trade-offs between various RAID layout policies in &arg
storage systems are well understood. Therefore, variqueaphes
have been explored to tune these policies based on datssguae
terns. One of the earliest systems that sought to addressthie
is Hy's AutoRAID [20]. AutoRAID manages two RAID levels:
RAID-1 and RAID-5. Newly written data is first placed in RAID-
and then is slowly migrated into RAID-5 as the data gets cOlde
problem with AutoRAID is that this migration cost is paid imet
common case, since by default all data starts off in RAID-&c-S
ond, the placement in the right RAID level is based on what the
system infers to be the access pattern. This can be quitedard
fer accurately when the workload consists of various indepat
interleaved streams of access. In contrast, DHIS explajticit
hints from the higher layers to enable more accurate planeme
Also, while AutoRAID only addresses one dimension in this-op
mization space (hamely, choosing RAID levels based on veneth
data is hot or cold), we have shown in this paper that thergaare
ous other attributes to be considered while deciding on Bcieit
layout and caching strategy.

Another approach that has been explored to address the prob-
lem of choosing the right RAID policies is to export inforrizat
from the RAID system to the higher layers. EXRAID [6] is an ex-
ample of a system in this category. By exposing fault bouedar
and redundancy information to the file system, ExRAID alldwe



the file system to tune its placement to match its expecttion
the characteristics of the data. RAID systems in the inghuso

adopt a somewhat similar strategy where the volume manager e

ables creating multiple volumes per RAID level. One coulégn

ine that a file system or database system could then implernsnt
tom policies by laying out data in the right volume. RAIF [12]
is one such approach. A problem with that approach is that-it r

quires the higher levels to understand the specifics of theeraf

policies and mechanisms the storage system supports. lrRlesea

have also tried to automate this volume configuration baseaf-0

fline trace analysis on the workload [2, 3]. However, givea th

increasing complexity of storage systems and the prevelef@a
wide variety of policies for storage layout, this approastharder
to scale. For example, NetApp systems use a form of doulile-da
protection called Row-Diagonal parity [5] and there areeotim-
plementations of RAID6 [11]. Instead, by abstracting higleeel
data characteristics through well-defined attributes, viggle this

gap without creating a dependency between the file systerthand

storage system.

Application-level hints can be processed by runtime lilgsf21]
over native storage interfaces. However, this architectaguires
runtime libraries for individual storage resources and élwsuited
for cases where the storage resources are distributed.

More recently, there has been work on automatically infgrri

knowledge about higher-level operations and data stresthy us-

ing semantic knowledge about the data [4, 17]. For example, s

mantic disks are capable of inferring that a particular $dtlacks

are metadata blocks and thus place those blocks in NVRAM for

better write performance [17]. One drawback with the infees
approach is its complexity and the difficulty of getting sunfer-
ence always correct. With the more explicit attributes, BHan

utilize a wider variety of higher-level information; forstance, the
NVRAM caching in DHIS extends beyond just file system meta-

data, and includes arbitrary user-level data that has aquserns
that are likely to benefit from NVRAM caching.

7. CONCLUSIONS

The wide variety of techniques available to manage storage |

out and reliability results in a difficult question for bottosge
vendors and developers of higher layers that interact viighstor-

age system: which of these policies should be chosen? Otni-con

butions to address this problem are as follows. First, wegt=d

a new design choice for making optimal data placement detsi

in an online fashion. By making intelligent use of the diéfet

optimizations including more intelligent block placemexithin a
specific RAID level, by using higher level hints about pragetfile
growth and more fine-grained file life-time characteristi# also
plan to implement policies for placement in finer-grainddhiwlity
levels in RAID, and consider emerging storage hardware sisch
flash memory.
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