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ABSTRACT
A typical storage hierarchy comprises of components with varying
performance and cost characteristics, providing multipleoptions
for data placement. We propose and evaluate a hierarchical stor-
age system, DHIS, that uses application-level hints to discriminate
between data with different access characteristics, and then cus-
tomizes its placement and caching policies to each type. Thedata
placement decisions in DHIS are made in an online fashion, dur-
ing data creation. Most existing solutions that attempt to customize
data layout require moving data around, based on access charac-
teristics. DHIS uses two kinds of information to make its deci-
sions. First, it uses knowledge about higher-levelpointers between
blocks (for example, file system pointers) to understand therela-
tionship between blocks and consequently, their importance. Sec-
ond, DHIS defines a set of generic attributes that the higher layers
can use to annotate data, conveying various properties suchas im-
portance, access pattern, etc. Based on these attributes, DHIS dy-
namically decides to place the data in the hierarchy best suited for
its requirements. By doing so, DHIS solves a critical problem faced
by storage vendors and developers of higher level storage software,
in terms of choosing the most efficient policy among many alter-
natives. Through several benchmarks, we show that DHIS’s data
placement decisions improve performance significantly.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Storage hier-
archies; D.4.2 [Operating Systems]: Storage Management—Al-
location/deallocation strategies; C.4 [Performance of Systems]:
Performance Attributes
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Design, Reliability, Measurement, Performance
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1. INTRODUCTION
Modern large storage systems are virtually supercomputers; a

typical high-end storage system from EMC [7] has hundreds of
processors, tens of gigabytes of RAM and hundreds of disks. In
tune with the increasing processing power available at the storage
systems, their functional sophistication has also increased. Today,
storage systems employ various forms of RAID for reliability and
performance, use non-volatile RAM to absorb write latency,per-
form dynamic block migration for load balancing, etc. [7, 20].

Although storage systems have evolved significantly in terms of
the range of functionality they provide, they are still constrained
due to one fundamental limitation: they have little or no informa-
tion about the system layers above that use the storage system,
and thus view data simply as a flat stream of bytes. Although
some large-scale storage systems such as the NetApp FS6000 [15]
understand higher-level file structures, and export a file-system–
like interface, a significant number of others still supporta generic
block-based interface for reasons of flexibility [7]. Such storage
systems for example do not know the relative importance of data,
their access-patterns, etc. Although a lot of storage-level policies
such as RAID level, caching policy, etc. can be tuned for specific
kinds of usage, a typical storage system cannot fully exploit this
potential because it deals with a myriad of interleaved types of data
each with different access characteristics, and has very little infor-
mation to separate these types from each other.

In this paper, we present aDiscriminatingHierarchicalStorage
system, DHIS (pronounced asthis), that uses various hints spec-
ified from the higher layers about the type of the data to select
custom policies for managing the data, such as the exact RAID
level, cacheability of the data in NVRAM, etc. DHIS also usesin-
formation on the logical relationship between blocks conveyed in
the form of logical pointers [16] to extrapolate its type information
from one identifying block to its descendants. By being ableto dis-
criminate between data with varying requirements, DHIS is able to
balance conflicting goals such as performance and reliability much
more efficiently than traditional storage systems.

To make informed choices on the exact layout and caching poli-
cies to use for a specific piece of data, DHIS enables the layers
above to annotate logical chunks of data withattributes on the data.
For instance, the file system can specify that a given file (identified
by the top-level inode block for the file) will be mostly subject to
small random writes. If this attribute is associated with the file,
DHIS can ensure to not place the file in a RAID-5 format, given
the small-write performance penalty incurred in RAID-5; instead,
it may choose to place it in RAID-1 (mirroring) format.

DHIS supports five attributes:

• Importance of the data (which determines how reliably the
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data should be stored).

• The normal access-pattern on the data (i.e., random or se-
quential).

• The expected popularity of the data (i.e., hot or cold).

• Whether the data is read-mostly or write-mostly.

• The expected lifetime of the data (i.e., whether it corresponds
to a temporary file).

Based on these five attributes, DHIS decides on the specific re-
dundancy and reliability scheme to use for the data, and the var-
ious forms of caching to use (e.g., whether to cache the data in
NVRAM or perhaps a faster Flash storage layer) such that the best
performance/reliability trade-off is obtained. Specifically, the cur-
rent implementation of DHIS utilizes these attributes to automati-
cally select the RAID level a piece of data goes into, and to decide
which pieces of data to cache in NVRAM.

We evaluate DHIS using a software prototype implementationin
the Linux kernel. Our prototype operates as a pseudo device driver
that interposes between the file system and the software RAIDlay-
ers. One key challenge in this prototyping environment is toensure
there is no performance interference between the host application
and the processing at the pseudo driver layer. By careful useof
kernel isolation techniques, we separate the CPU’s and memory’s
usage of the software prototype from the host applications,thus
providing a fairly close approximation of an actual hardware pro-
totype with its own processing and memory. We believe that this
prototyping environment is valuable more generally for evaluating
other kinds of functionality in the storage system.

Using this prototyping environment we evaluate the variousdis-
criminating policies of DHIS and demonstrate their effectiveness.
We show that DHIS can achieve significant performance wins by
exploiting higher-level attributes. We show that the flexibility to
choose RAID levels on a per-file basis provides significant benefits
in performance, compared to the one-size-fits-all solutionnormally
employed in today’s systems. We also show that by intelligent
NVRAM caching of data that is subject to frequent random writes
(e.g., meta-data blocks in a file system), DHIS greatly improves
overall system performance. As we see in Section 5.4.4, caching
meta-data selectively in NVRAM can improve write performance
by 37% for random I/O-intensive workloads.

Overall, we find that DHIS offers an interesting design choice for
building storage systems that exploit higher level system informa-
tion. By allowing the higher layers such as the operating system to
express attributes inherent only to the data and not what thestorage
system should do with it, we decouple the layers; in other words,
the file system need not understand the specifics of the wide variety
of low-level mechanisms and policies that today’s storage systems
use. Depending on the specific features available within a storage
system, the storage system can decide how to exploit this valuable
extra information.

The rest of this paper is organized as follows: in Section 2,
we discuss the background of modern storage systems and type-
aware storage. In Section 3, we describe the design details of DHIS
and show the kind of optimizations that DHIS enables. Section 4
presents our disk prototyping framework and our prototype imple-
mentation of DHIS. We evaluate our prototyping framework and
our implementation in Section 5. We discuss related work in Sec-
tion 6 and conclude in Section 7. Finally, in Section 8, we discuss
how we plan to extend this work in the future.

2. BACKGROUND
In this section, we first describe the current state of the artin hi-

erarchical storage and motivate the need for fine-grained policies
specific to data. We then briefly discuss the usage of pointer infor-
mation in type-safe storage which our work builds upon.

2.1 Modern Large-Scale Storage Systems
Large-scale storage systems today comprise diverse resources

that include high processing power, hundreds of gigabytes of RAM,
solid state storage media such as flash, and hundreds or even thou-
sands of disks [7]. Modern storage systems run complex software
to provide functionality such as reliability, fault-tolerance, and high
performance I/O. One of the challenges in such storage systems is
to effectively manage the wide range of resources to provideop-
timal performance and customizable features. However, despite
the advancement in storage hardware, the interface used forcom-
municating with them is still simple and narrow in most scenar-
ios. For example, the SCSI interface supports just two main primi-
tives, blockread andwrite, resulting in the storage system be-
ing mostly oblivious to higher-level information. This makes effi-
cient resource management within modern storage systems a diffi-
cult problem, as storage systems cannot discriminate between dif-
ferent kinds of information they store.

Some existing systems try to work around this problem by ex-
porting more information to higher-level software [6, 9]. For ex-
ample, certain enterprise-class storage systems allow higher-level
software to choose the RAID level to use for a new volume, dur-
ing creation [10]. However, this requires that the file system or
higher-level storage software be aware of the characteristics of each
volume, which could be totally tied to the internal architecture of
the specific storage systems. For example, a storage system could
contain several fine-grained RAID levels, as well as devicessuch
as NVRAM and solid state memory. Storage architectures could
also be different across vendors and models, and it may be cumber-
some to customize file systems for specific storage systems. More-
over, the abstraction of a volume is in most cases too coarse-grained
to express difference in access characteristics across files. There-
fore, it is more flexible and straight-forward to communicate the
attributes associated with data to the storage system, and let the
storage system decide the policies based on its internal architec-
ture.

2.2 Type-Awareness in Storage
Recently, there have been efforts to bridge the informationgap

between storage systems and higher level layers using Object-Based
Storage devices (OSD) [14] and Type-Safe Disks (TSD) [16]. While
OSDs fundamentally change the view of storage systems by export-
ing an object interface, TSDs extend the traditional block interface
by introducing the notion of logical pointers between blocks. In this
section, we briefly describe TSDs which form the basis for DHIS.

TSDs aim at communicating file-system–level block pointersto
the disk system, enabling useful functionality at the disk-firmware
level. File system pointers indicate logical relationships between
disk blocks. For example, a per-file meta-data block (such asan
Ext2 inode block) has pointers to data blocks belonging to a file.
At the disk-level, pointers help infer at least three key pieces of
information:

1. Logical grouping of blocks. For example, the set of blocks
pointed to by a per-file meta-data block can represent all data
belonging to a file.

2. Relative importance of blocks. Blocks with outgoing point-
ers impact the reachability of one or more other blocks, and
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hence are more important. For example, meta-data blocks
are more important than regular data blocks.

3. Block liveness. Current disk systems cannot differentiate used
and unused blocks. With pointers, a disk system can infer
that blocks without any incoming pointers are unused (as
they cannot be reached).

Information about higher-level pointers enables a disk system
to provide useful functionality that cannot be provided by present
day’s disks. For example, a TSD can perform intelligent prefetch-
ing of blocks based on logical relationships indicated by pointers
(when a meta-data block is accessed, blocks pointed to by it can
be prefetched). Knowledge of relative importance of blockscan be
used to adopt better redundancy schemes for important blocks.
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Figure 1: Traditional disks vs. TSDs
.

The architectural differences between a regular disk and a TSD
are shown in Figure 1. TSDs export an extended block-based in-
terface to support pointers, and to perform free-space management
at the disk level. Disk primitives to allocate blocks and adding
or removing pointers can be used by higher-level software such as
file systems to communicate the necessary information to thedisk.
TSDs also perform automatic garbage collection of blocks that are
not reachable through any pointer, thereby obviating the need for
the higher-level software to manage free blocks explicitly. For ex-
ample, the Ext2TSD file system [16] is a modified Ext2 file system
that exports pointer information to a TSD.

3. DESIGN
In this section, we describe the design of DHIS in detail and

discuss the optimizations that DHIS achieves by using higher-level
attributes on data. In Section 3.1, we describe the type-aware hi-
erarchical storage setup that DHIS incorporates and its salient fea-
tures. In Section 3.2, we present the set of well-defined higher-level
attributes that DHIS supports. Finally, in Section 3.3, we show the
kind of optimizations that these attributes enable.

3.1 A Hierarchical Storage Architecture
DHIS’s architecture comprises volatile and NVRAM, as well as

several individual disks aggregated using standard RAID levels. In
our design, we particularly consider the three most commonly used
RAID levels: RAID0 (striping without redundancy), RAID1 (mir-
roring), and RAID5 (striping with a parity block per stripe). These
three RAID levels have varying characteristics in terms of perfor-
mance, reliability, and cost per gigabyte. We aim to use these re-
sources within a single storage system and manage them efficiently

in a transparent manner using higher-level hints about dataand
access semantics. DHIS exports a flat namespace to higher-level
storage software such as file systems, and aggregates the storage
capacity available in the different RAID levels internally. The ar-
chitecture we use while designing DHIS is shown in Figure 2.

In the rest of this section, we detail the basic design aspects of
operating such a hierarchical storage system in a type-aware stor-
age setup as described in Section 2.2.

3.1.1 Virtualizing the Block Layer Namespace
Although DHIS manages several disks and RAID levels inter-

nally, it appears like a single disk system to higher-level software.
For this purpose, it maintains a block-address virtualization layer
that contains an address translation table,TTABLE, which maps
the global logical block namespace to individual disk-specific ad-
dresses. A physical address contains two parts: a disk or device
identifier (e.g., an internal RAID device), and a physical block
number within that device. TheTTABLE is looked up for every
I/O request, and is updated whenever blocks need to be re-mapped
to different devices. DHIS stores theTTABLE and other book-
keeping structures in non-volatile RAM and periodically writes them
to the disk. Note that inbuilt non-volatile memory has been quite
common in high-end storage devices for a while, and recentlyit is
being used even for regular hard drives [18].

3.1.2 Block Allocation
DHIS performs free-space management at the firmware level,

thereby freeing higher-level applications from maintaining infor-
mation solely for placement of data on disk. Block allocation is
done using an explicitalloc block disk primitive. This is im-
portant for two reasons. First, higher-level software is unaware of
internal disk characteristics and hence cannot make correct deci-
sions about block locality especially when the storage system has
a complex hierarchy of disk media internally. For example, an
Ext2 file system’s allocation algorithm assumes that blockswhose
logical block numbers are contiguous are physically contiguous as
well. This may not be true in a hierarchical storage system. Second,
by managing free-space on disk, DHIS can exploit its knowledge
of block-liveness to proactively perform operations such as aggres-
sive replication of hot read-only data, to improve performance and
reliability. The block allocation API optionally takes a hint block
number to allocate the new block closer to it.

One of the main design goals of DHIS is to enable placement of
data blocks at the right RAID-level based on higher level data char-
acteristics such as access patterns, relative importance,etc. There-
fore, whenever a block is allocated by the higher-level, thedisk has
to assign a logical block number for it in the global block names-
pace, and then allocate a physical block in one of the RAID devices.
To enable this, DHIS maintains an allocation bitmap for the logi-
cal namespace and separate bitmaps for every underlying physical
device. The block-allocation primitive performs two steps: one to
allocate a logical block number and the second for a physicalblock
number in one of the lower disks. DHIS adds aTTABLE entry
whenever a new block is allocated.

3.1.3 Pointer-Based Optimizations
Like a TSD (described in Section 2.2), DHIS includes two disk

primitives, one to create logical pointers between blocks called
CREATE PTR(srcblk,destblk), and the other to delete log-
ical pointers calledDELETE PTR(srcblk,destblk). These
primitives can be used by higher-level software to communicate
pointer relationship to DHIS . DHIS maintains all pointers with re-
spect to the global logical block namespace, and not the physical
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blocks. This allows DHIS to relocate physical blocks transparently
without affecting the stored pointer information.

By using pointer knowledge, DHIS performs three key optimiza-
tions as follows:

1. All higher-level meta-data blocks (identified as those hav-
ing outgoing pointers) are placed in the RAID level of high-
est reliability and best random-access performance. This is
because meta-data blocks are more important and accessed
more frequently compared to regular data blocks. In our
setup, we use RAID1 for this purpose. Note that as the phys-
ical destination of blocks are determined at the time of allo-
cation, we do not have information about outgoing pointers
for a newly created block and hence we cannot differenti-
ate between data and meta-data for a newly allocated block.
Only when the first outgoing pointer is created from a block,
DHIS can identify it as a meta-data block. Therefore, DHIS
performs dynamic relocation of meta-data blocks to RAID1
as and when the first pointer is created from a block.

2. As meta-data blocks need to be written to disk frequently for
reliability reasons, DHIS attempts to absorb the write latency
of these blocks by caching writes in NVRAM. As meta-data
blocks constitute a small percentage of the total size of stor-
age, NVRAM caching is beneficial. DHIS flushes out the
NVRAM contents to RAID1 in configurable periodic inter-
vals of time and also when the device is idle.

3. DHIS exploits its knowledge about block-liveness (differ-
entiating between used and unused blocks) to remove dead
blocks (those freed by the file system) from the NVRAM
cache and the regular disk cache, for improving the cache
utilization.

3.2 Attributes
In this section we describe the set of hints or attributes that higher-

level software such as file systems can associate with disk blocks in
DHIS. Note that knowledge about pointers at the disk level allows
DHIS to inherit attributes of a meta-data block to the sub-tree of
data blocks that it points to. For example, to set an attribute for a

file, a file system just needs to set an inheritable attribute to the per-
file meta-data block, and DHIS automatically inherits the attribute
to all blocks belonging to that file.

There have been previous efforts to infer the characteristics of
blocks at the disk level without an explicit interface, by using his-
tory of accesses [20] or block correlations [13]. However, these
methods are quite limited in the range of characteristics they can
infer, and often end up being too complex. For example, although
it is possible to identify hot and cold blocks using access history,
information such as the relative importance of blocks with respect
to higher-level applications cannot be inferred easily. Therefore,
DHIS provides an explicit interface for communicating a setof
well-defined hints or attributes that can be set by higher-level stor-
age software such as file systems.

3.2.1 Attribute Interface
Higher-level software can set attributes using an explicitdisk

primitive, DHIS SETATTR, by passing a bitmap representing the
attributes. Note that attributes in DHIS are normally set tometa-
data blocks, and they qualify the characteristics of all blocks in
the pointer tree starting from that block. For example, if anExt2
file system needs to specify the access pattern for a file, it needs
to set an appropriate attribute to the corresponding inode block.
DHIS automatically groups blocks in the sub-tree and associates
the attribute to all such blocks. The following are the attributes that
DHIS supports:

• IMPORTANCE: determines the relative importance of a data
item. Currently DHIS supports this as a Boolean attribute
which indicates that an entity is more important than oth-
ers. This can potentially be extended to support more fine-
grained levels based on the diversity in internal storage hard-
ware. Applications, for example, can set this attribute for
source files or documents that need to be preserved with the
highest level of reliability.

• ACCESS PATTERN: determines if the set of blocks (belong-
ing to the sub-tree of a meta-data block) will be accessed
randomly or sequentially. This attribute takes two values:
random, or sequential. Applications can set this attributeto
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files they own based on their access pattern. For example, a
simple classification of files based on their types can enable
a file system to mark video files as sequential and database
index files as random.

• HOT/COLD: specifies the frequency in which the particular
data item will be accessed. This takes either of these values:
hot, and cold. Generally applications can set archival data
as cold and frequently updated files such as database write-
ahead log files as hot.

• READ-MOST/WRITE-MOST: indicates whether a data item
will be mostly read or written. For example, binary files such
as/bin/ls in Unix will be mostly read and will be updated
only infrequently. Similarly, file system journals or database
log files will predominantly be written.

• TEMPORARY: this is a Boolean attribute that indicates whether
a data item is temporary (i.e., short-lived) in nature. For ex-
ample, object files generated by compilers and intermediate
files generated by applications such as download managers
can be classified as temporary.

The above attributes are the ones that have been currently im-
plemented in the DHIS prototype. In Section 8, we discuss how
we plan to extend this set of attributes. Storage software such as
file systems can set attributes for appropriate meta-data blocks, us-
ing application-specific information. For example, file systems can
export an interface to user applications to set attributes at the gran-
ularity of files or directories. In such cases, file systems have the
responsibility to transform logical abstractions (such asfiles) into
corresponding meta-data blocks and to pass the attributes to DHIS.
For example, an Ext2 file system can export anioctl that user ap-
plications can use to set attributes to a file identified by a path name.
Ext2 can then issue aDHIS SETATTR call with the attribute, for
the inode block corresponding to the path name.

3.2.2 The Ext2DHIS File System
We developed an attributes-aware file system to support DHIS,

as an extended form of the Ext2TSD file system [16]. Ext2TSD
is a modified Ext2 file system that supports TSD devices. There
are two main differences between a regular Ext2 file system and
Ext2TSD. First, Ext2TSD does not perform free-space manage-
ment, and allocates blocks using the TSD disk API. Second, when-
ever a new pointer is added or removed for a meta-data block (such
as an inode), Ext2TSD issues the correspondingCREATE PTR or
DELETE PTR calls to the disk to communicate the pointer.

We have developed Ext2DHIS as an extended Ext2TSD file sys-
tem that includes anioctl interface for user applications to set
attributes to files or directories. Ext2DHIS issuesDHIS SETATTR
calls to the storage system whenever attributes need to be set or
changed. In addition to this, we have developed a simple scheme to
set basic attributes automatically for known file name extensions, at
the file system level. For example, Ext2DHIS automatically marks
files with extensions.c, .cpp, etc., as important as these may be
source files. This provides a simple means to set basic attributes
without the need to modify user-level applications.

3.3 Attribute-Based Optimizations
In this section, we describe the optimizations that DHIS achieves

using the well-defined set of attributes listed above. First, we present
the method we use to choose the right RAID level for a given data
item. Second, we describe how better NVRAM utilization can be
done by choosing the right candidates to cache. Third, we detail

how information about temporary files can aid in reducing disk
fragmentation.

3.3.1 Choosing Optimal RAID Levels
The three RAID levels that DHIS manages have different per-

formance and reliability characteristics. In this section, we first
describe the key characteristics of RAID levels in DHIS and then
we detail the policies DHIS adopts to choose the right RAID level
to place data.

Characteristics of RAID Levels.
RAID0 performs plain striping across several disks withoutany

redundancy and hence it has the lowest reliability level among the
three. However, in terms of performance, RAID0 is good for se-
quential and random read-write workloads. This is mainly because
I/O operations get parallelized across the individual disks when
data is striped. In terms of cost per gigabyte, RAID0 is the cheapest
as there is no redundancy and the storage capacity is the sum of the
individual disk capacities.

RAID1 mirrors data across two or more disks. As the disks con-
tain identical data at all times, data reliability is betteras it can tol-
erate N-1 disk failures where N is the number of mirrored disks. In
terms of performance, RAID1 has similar characteristics for both
sequential and random I/O. Reads are faster than writes as reads
can be parallelized across the N disks. Write speed is in tunewith
that of a single disk, because for every write, all disks haveto be
updated, but in parallel. RAID1 has the highest cost per gigabyte
as the total capacity of the drives is halved due to mirroring.

RAID5 stripes both data and parity information across threeor
more drives. In principle it is similar to having a single dedi-
cated parity drive, but parity blocks are distributed across all drives.
RAID5 can recover from single disk failures and hence has compa-
rable reliability to a two-disk RAID1. Read performance in RAID5
is similar to that of RAID0. However, for small random writes,
RAID5 performs poorly. This is because, for small writes that
do not span a complete stripe, computation of new parity involves
reading the old contents of the data block and the parity block. In
terms of cost per gigabyte, RAID5 is the second best among the
three, as there is a single parity block for a stripe.

RAID Placement Policies.
In addition to placing all meta-data blocks in RAID1 (as de-

scribed in Section 3.1.3), DHIS also adopts placement policies based
on higher-level attributes. Table 1 shows the placement policies
that DHIS adopts for each combination of attributes. The princi-
ples that we use to decide the RAID level for a data item are in
tune with the performance and reliability characteristicsassociated
with each RAID level as described above. Note that for data that
is IMPORTANT andCOLD we use RAID5 irrespective of its access
pattern and read-write characteristics because they are going to be
accessed rarely and hence performance is not a significant factor.

3.3.2 Choosing Candidates for NVRAM Caching
DHIS chooses candidates for NVRAM caching to maximize the

number of absorbed writes through NVRAM. It chooses all meta-
data blocks as candidates as described in Section 3.1.3, because
meta-data blocks are frequently written and have random access
patterns. Similarly, it also chooses blocks with the combination of
attributesHOT,WRITE-MOST, andRANDOM, as these are expected
to benefit the most from NVRAM caching. We do not choose se-
quential workloads as candidates and in general they do not benefit
much from caching.

DHIS manages NVRAM buffers using a simple mechanism that
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IMPORTANT ACCESS PATTERN READ/WRITE-MOST HOT/COLD RAID Levels
No Any Any Any 0, 5, 1
Yes Any Any Cold 5, 1, 0
Yes Not set Not set Not set or Hot 5, 1, 0
Yes Random Not-set or Write-most Not set or Hot 1, 5, 0
Yes Random Read-most Not set or Hot 5, 1, 0
Yes Sequential Any Not set or Hot 5, 1, 0

Table 1: RAID placement heuristics. The order of RAID levels listed in the last column is the desired order for each combination of
attributes. DHIS tries the next level when allocation fails in one of the levels.

caches writes when the corresponding block is a candidate, and an
asynchronous process that flushes NVRAM buffers to disk when-
ever the disk is idle. When all buffers in the NVRAM are dirty,
DHIS passes all subsequent writes to other candidates directly to
disk, until NVRAM buffers are flushed out.

3.3.3 Reducing Disk Fragmentation
A fragmented disk can yield poor performance for large files that

are accessed sequentially. This is because when there are only frag-
ments of free-space left for allocation, large files may end up spread
out across the disk resulting in unnecessary disk seeks. Temporary
files that get created and deleted within short intervals of time could
exacerbate disk fragmentation, thereby seriously affecting the per-
formance of large files under some scenarios.

DHIS deals with temporary files in a different manner to reduce
disk fragmentation. As DHIS is responsible for free-space manage-
ment, it allocates space for block groups with theTEMPORARY at-
tribute set, in a segregated portion of RAID level 0 (group ofblocks
at the end of the device). For blocks that are not temporary, DHIS
never allocates space from this segregated area. This ensures that
temporary files that get created and deleted never interferewith the
allocation of regular files, thereby significantly reducingdisk frag-
mentation.

4. IMPLEMENTATION
In this section, we first describe our generic disk functionality

prototyping framework, DPROTO, that we built for the Linux ker-
nel 2.6.15. We discuss the implementation details of DHIS over
DPROTO.

4.1 DPROTO
We developed DPROTO as a pseudo-device driver that stacks

on top of one or more lower-level disk or software RAID drivers,
in a single machine. One of the main challenges in developing
DPROTO is isolating the resources consumed by components that
are supposed to go inside the disk firmware if it were a real im-
plementation. For example, if the functionality being prototyped
is a disk-level data compression technique, the part of DPROTO
that performs compression has to consume resources that arecom-
pletely isolated from that used by applications and file systems,
which is difficult in a single machine setup.

While developing DPROTO we aimed at isolating key resources,
CPU and memory, between disk-level functionality and higher-
level applications. For CPU isolation, we use a multiprocessor
setup and ensure that disk-level functionality always getsexecuted
in an isolated processor. For memory isolation, we implemented an
isolated preallocated memory pool and ensured that disk function-
ality never accesses memory beyond the preallocated range.

Figure 3 shows the architecture of DPROTO. We implemented
the pseudo-device driver as two layers, the upper layer running in
the context of the file system, and the lower layer running as asep-

RAID 5
driverdriver

RAID 1

File System

Generic Block Layer

Queue

DPROTO Request Layer

Service Thread

driver
RAID 0

Processor 1

Processor 2

Preallocated

Memory pool

Figure 3: DPROTO Architecture

arate thread bound to an isolated CPU. Disk I/O requests generated
from the file system reach the upper layer of DPROTO, which adds
the request to a shared queue. The lower layer services requests
from the queue and eventually passes it down to physical storage.
Any disk-level functionality such as compression would be han-
dled by the lower-level service thread and hence runs in an isolated
CPU. All memory allocations done by both layers of DPROTO use
the preallocated memory pool. Therefore, DPROTO requires speci-
fying the total memory requirement for a given functionality before
hand.

To test the performance of a disk-level functionality prototyped
using DPROTO, the comparison reference can be run with one pro-
cessor disabled and with the appropriate size of memory preallo-
cated. For example, if a compression disk system is comparedto a
regular disk system for a particular workload, the regular disk run
of the workload has to be done with one processor disabled andthe
preallocated memory equal to the memory requirement of the com-
pression disk. With this procedure, the comparison becomesfair
and closely represents the results of a real implementation.

Our implementation of DPROTO had 5,790 lines of new kernel
code and 350 lines of user-level code.

4.2 DHIS Prototype
We implemented a prototype of DHIS using our DPROTO frame-
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work. We preallocated the size of each of our data-structures,TTABLE,
NVRAM cache, allocation bitmaps, attribute and pointer manage-
ment structures, and request queue, as a function of the total storage
capacity. For the three RAID levels, we stacked DPROTO on topof
the regular Linux software RAID drivers for RAID0, RAID1, and
RAID5. Our prototype of DHIS had 2,150 lines of kernel code in
addition to DPROTO.

5. EVALUATION
We evaluated the performance of DPROTO and our prototype

implementation of DHIS to get an estimate of the benefits achieved
by attribute-based RAID placement and NVRAM caching. In Sec-
tion 5.1, we present our evaluation setup. In Section 5.2, wede-
scribe the benchmarks that we used. In Section 5.3, we discuss the
performance characteristics of our prototyping framework, DPROTO.
Finally, in Section 5.4, we show evaluation results for DHIS’s RAID
placement for several micro-benchmarks, an OLTP workload and
a Kernel Compile workload. We also present evaluation results for
DHIS’s NVRAM caching mechanisms.

5.1 Evaluation Setup
For all benchmarks, we used a 2.8GHz Xeon machine with 1GB

RAM, and 6 Maxtor SCSI disks with capacities of 250 GB each,
rotational speed of 7,200 RPM and with 8MB cache. We used Fe-
dora Core 6, running a vanilla 2.6.15 kernel.

To ensure a cold cache between benchmark runs, we unmounted
all involved file systems between each test. We ran all tests at least
five times and computed 95% confidence intervals for the mean
elapsed, system, user, and wait times using the Student-t distribu-
tion. In each case, the half-widths of the intervals were less than
5% of the mean. Wait time is the elapsed time less CPU time used
and consists mostly of I/O, but process scheduling can also affect
it.

We observed disk statistics from/proc/diskstats for each of
our benchmarks and used it to analyze the reasons behind our re-
sults. Disk statistics provide the following information observed
by the disk for each benchmark we ran: number of read I/O re-
quests (rio), number of write I/O requests (wio), number of sec-
tors read (rsect), number of sectors written (wsect), number of
read requests merged (rmerge), number of write requests merged
(wmerge), total time taken for read requests (ruse), and the total
time taken for write requests (wuse).

5.2 Benchmarks and Configurations
We used the following benchmarks: Postmark [19], a series of

micro-benchmarks, FileBench [1] and Kernel Compile. We discuss
each of them below.

We used Postmark [19], a popular file system benchmarking tool,
to test the performance of our prototypes. Postmark is I/O-intensive
and stresses the file system by creating a large number of small files
and then performing a series of file system operations such asdi-
rectory lookups, creations, and deletions on them. A large num-
ber of small files is common in electronic mail and news servers
where multiple users are randomly modifying small files. Postmark
mostly generates a combination of small random reads and writes,
and hence we use this for testing the performance of our implemen-
tations, under random workloads. The working set of a Postmark
benchmark is determined by the number of files to be created ini-
tially, and their size range. For all runs of Postmark, we used file
sizes ranging from 400KB to 600KB with the base number of files
set to 3,000. We chose these parameters in order to create a reason-
ably large working set for the test machine (1GB RAM). We have
mentioned the exact configuration of Postmark used for each test,

along with the respective test results.
We also ran a series of micro-benchmarks to test the character-

istics that Postmark does not cover. For example, Postmark does
not evaluate sequential I/O performance and overheads for large
file workloads. Micro-benchmarks also isolate the overheads for
specific operations, and hence give a clearer picture of the over-
heads. We developed a user-level tool that generates one of the
following workloads: random read, random write, sequential read,
and sequential write. For all runs, we used 4KB read or writes
on a single 1.5GB file. For the sequential benchmarks (read and
write), we performed sequential 4K I/O on the 1.5GB file 5 times,
totalling to 7.5GB of I/O. For random read and write benchmarks,
we performed 20,000 and 150,000 4K I/O respectively.

We used FileBench [1] to emulate an OLTP application. Finally,
we used the linux kernel 2.6.28 sources for the Kernel Compile
workload. We mention more details on the test setup when we
discuss the benchmark results for the OLTP and Kernel Compile
workloads in Section 5.4.2 and Section 5.4.3 respectively.

5.3 DPROTO Overheads
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Figure 4: Postmark results for DPROTO vs. a regular disk

We evaluated the performance of DPROTO framework as a null
layer that stacks on top of a regular disk. We ran Postmark fortwo
different configurations on an Ext2 file system mounted on thenull
DPROTO layer, and compared it with Postmark run on a regular
disk. Figure 4 shows the overheads of DPROTO compared to a
regular disk. The overall elapsed time overhead of DPROTO was
only 3.6% compared to regular disks. This is contributed mostly by
an increase in wait time, due to an additional level of indirection in
the DPROTO request service queue.

5.4 DHIS Results
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Figure 5: Postmark results for Ext2DHIS over DHIS compared to Ext2
over plain DPROTO

We evaluated the performance of our prototype implementation
of DHIS and our optimizations for RAID placement and NVRAM
caching.
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Figure 5 shows the overheads of DHIS over regular DPROTO.
We configured DPROTO to preallocate the same amount of mem-
ory that DHIS required for storing its data-structures (128MB). Al-
though the elapsed times for both runs are similar, DHIS has higher
system time (13 secs vs. 49 secs) and lower wait time (449 secsvs.
416 secs) compared to regular DPROTO. The system time increase
is due to two reasons. First, Ext2DHIS issues ioctls to the pseudo-
device driver to communicate pointer information, contributing the
major component of system time. Second, the shared queue is pro-
tected by a spin lock and hence minor contention causes a busy
wait resulting in increased system time. The reduced wait time
is because of better spatial locality caused by the disk-level block
allocation scheme used by DHIS (compared to file-system–level al-
location in Ext2). The scheme co-locates blocks in a greedy fashion
without taking into account future file growth.

5.4.1 RAID Placement Optimizations
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Figure 6: Postmark results for Ext2DHIS over DHIS compared to Ext2
over plain DPROTO on RAID1 and RAID5

To evaluate the benefits of the RAID placement optimizations
performed by DHIS, we used Postmark and micro-benchmarks.
For all benchmarks, we observed the time taken for the workload
on regular DPROTO stacked over individual RAID1 and RAID5
devices and compared them with DHIS. While running the work-
load over DHIS, we set theIMPORTANT andACCESS PATTERN
attributes, so that DHIS would place them in the optimal RAID
level.

As Postmark generates mostly a random workload, we ran it
with theRANDOM attribute set. For micro-benchmarks, we set the
SEQUENTIAL andRANDOM attributes for sequential and random
reads and writes respectively.

Figure 6 shows the Postmark results for DHIS as compared to
DPROTO on individual RAID1 and RAID5. As evident from the
figure, DHIS performs closer to regular RAID1 as it placed the
Postmark working set on its RAID1 hierarchy. DHIS has an elapsed
time overhead of 25% compared to regular RAID1 although DHIS
places all data on RAID1 for this benchmark. This is due to two
reasons. First, Postmark creates and deletes a large numberof files
and hence results in a large amount of pointer operations andat-
tribute updates. This results in increased system time (13 secs vs.
49 secs) as seen from the figure. Second, as pointer operations are
synchronous in nature, they block until the DPROTO service thread
handles them. This results in increased wait time (386 secs vs. 452
secs). The overheads are more pronounced for the Postmark work-
load because Postmark is an extreme case of an I/O-intensivework-
load. In most common workloads, DHIS performs much closer to
RAID1 for random workloads (as shown in the micro-benchmark
results below).

Figure 7 shows the micro-benchmark results for RAID place-
ment. As shown in the graphs, under all cases, DHIS performs

close to the fastest of the two RAID levels. Note that for the se-
quential write workload, DHIS performs 16% better than RAID5.
This is because DHIS places all meta-data blocks in RAID1 for
maximizing reliability and better performance (as meta-data blocks
will mostly be accessed at random). By placing meta-data blocks
in RAID1, DHIS has better sequential write characteristics, as ran-
dom meta-data updates (such as updating the inode) gets absorbed
by RAID1 while writing to a large sequential file on RAID5.

5.4.2 OLTP Workload
FileBench [1] is a framework for file system workloads. It uses a

high level workload language to model the I/O behavior and other
characteristics of desired applications. We used FileBench to em-
ulate an OLTP workload. This workload performs transactions on
a file system using an I/O model from Oracle 9i. This workload
tests for the performance of small random reads and writes todata
files and synchronous writes to a log file. It launches a config-
urable number of reader processes, ten writer processes forasyn-
chronous writing, and a log writer process. The emulation includes
the use of Intimate Shared Memory (ISM). ISM is a special kind
of shared memory used by DBMS vendors to maximize I/O per-
formance. Because the writes to data files are asynchronous,the
throughput is limited mostly by the read performance. Figure 8(a)
shows the I/O throughput achieved using DHIS for a varying num-
ber of reader processes. The figure also compares these throughput
values with those achieved using DPROTO over RAID0, RAID1
and RAID5. The number of reader processes is varied between 25
and 100 in increments of 25 with 10 asynchronous writer processes
and a log writer process. The working set for the workload consists
of 10 data files each of size 250 MB and a log file of size 250 MB.
These file sizes ensure that we have a reasonably large working set
for the test machine (1 GB RAM). While benchmarking DHIS, we
ran FileBench with the attributesIMPORTANT andREAD-MOST
andACCESS-PATTERN set toRANDOM on the data files. We ob-
serve that DHIS performs close to RAID5 as it chooses RAID5
for the said category of data files. RAID0 has higher throughput
relative to RAID1, RAID5, and DHIS for this workload because
of the high concurrency in disk accesses but is not applicable for
important data. Figure 8(b) shows the latency per operationusing
the same configurations as above. Again, DHIS performs closeto
RAID5. Further, the relatively higher rate of increase in latency val-
ues for RAID1 with increasing number of reader processes shows
that RAID0, RAID5, and DHIS handle I/O concurrency much bet-
ter than RAID1 for this workload. In summary, setting appropri-
ate attributes on data files for the OLTP workload enables DHIS
to make the most efficient data placement decision and it indeed
performs close to RAID5.

5.4.3 Kernel Compile Workload
To evaluate the benefits of DHIS when upper layers such as file

systems or applications set attributes on files based on file types,
we ran a kernel compile workload for four cases. For each case, the
sources directory is based on RAID1 storage that is separatefrom
the storage for the build directory. The build directory wascon-
figured to be based on one of RAID0, RAID1, RAID5, or DHIS.
The upper layer (in this case, the ext2DHIS file system) sets the at-
tributeTEMPORARY on binary files. DHIS processes the attribute
and places all binary files in RAID0 storage. Figure 9 shows the
total number of sectors written in each case. While RAID1 and
RAID5 write 82% and 48% more sectors than DHIS, DHIS writes
7% more sectors than RAID0. The overhead of DHIS relative
to RAID0 is explained by the fact that DHIS places all metadata
blocks in RAID1. Figure 10 shows that all four cases compare
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(a) Sequential Read Benchmark
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(b) Sequential Write Benchmark
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(c) Random Read Benchmark
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(d) Random Write Benchmark

Figure 7: Microbenchmark results for DHIS. For each benchmark we show the time taken for regular DPROTO directly over RAID1
and RAID5, and compared them with DHIS with access-pattern attributes
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DHIS for the Kernel Compile Workload
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Figure 10: Kernel Compile results for RAID0, RAID1, RAID5, and
DHIS

almost equally well in terms of performance. Infact, DHIS has a
system time overhead of about 2% because of pointer operations
and attribute updates. The lack of apparent performance benefits is
because a kernel compile is a CPU-intensive workload. However,
other benefits such as power savings and reduction in backup over-
head are apparent if we consider the fact that relatively less I/O is
being performed and the possibility that RAID0 storage neednot
be backed up.

5.4.4 NVRAM Caching
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Figure 11: Postmark results for Ext2DHIS over DHIS with selective
NVRAM caching enabled (right) compared to Ext2 over DHIS (left)

To evaluate the benefits of caching selected candidates in NVRAM,
we compared ext2 over DHIS with ext2DHIS over DHIS. When
running ext2DHIS over DHIS, we enabled selective NVRAM caching
for DHIS. In both the cases, the file systems were mounted in
synchronous mode. Using the pointer information exported by
Ext2DHIS, DHIS chooses all meta-data blocks as candidates for
NVRAM caching and hence for a synchronous workload most of

the meta-data block writes will be absorbed by the NVRAM. Fig-
ure 11 shows the benefits of selective NVRAM caching. For this
run, we configured Postmark to create 1,000 files with sizes ranging
from 10KB to 20KB, and 2,000 operations. We used this smaller
configuration as we ran this workload with a synchronous mount
of the file systems. As seen from the figure, caching meta-datase-
lectively in NVRAM can improve write performance significantly
(37%) for random I/O-intensive workloads.

In summary, we have shown through several benchmarks and
workloads that by setting appropriate attributes about data usage,
access patterns and importance, DHIS can be made to perform
substantially better than traditional storage systems that place data
without the knowledge of such attributes.

6. RELATED WORK
Our work builds on the work on type-safe disks by Sivathanu et

al. [16] which first proposed the notion of communicating informa-
tion on logical pointers to the disk system, thus enabling the disk to
know about the higher level structure of data. Like type-safe disks,
Object-Based Storage devices (OSD) [14] also provide a richer de-
vice interface, improving device intelligence. OSDs support the
notion of attributes on objects through which higher-levelsoftware
can communicate object properties to the storage devices. Thus, a
hierarchical storage system like DHIS can also be built on top of
OSDs.

DHIS can help automate storage administration as envisagedby
Self-* Storage [8]. That work proposes the notion of supervisors,
workers, and routers for automated administration. Workers are re-
sponsible for storage allocations based on observed workloads. Al-
though the Self-* storage architecture would work with workers as
block stores, they can work better with intelligent storagesystems
like DHIS.

Karma [22] provides for an informed management policy in the
context of multilevel caches. Like DHIS, Karma leverages applica-
tion hints to make informed allocation decisions. Whereas Karma
focuses on improving cache hit rate, DHIS enables RAID levels
to occupy optimal positions in the storage hierarchy depending on
data attributes.

The trade-offs between various RAID layout policies in large
storage systems are well understood. Therefore, various approaches
have been explored to tune these policies based on data-access pat-
terns. One of the earliest systems that sought to address this issue
is Hy’s AutoRAID [20]. AutoRAID manages two RAID levels:
RAID-1 and RAID-5. Newly written data is first placed in RAID-1
and then is slowly migrated into RAID-5 as the data gets cold.One
problem with AutoRAID is that this migration cost is paid in the
common case, since by default all data starts off in RAID-1. Sec-
ond, the placement in the right RAID level is based on what the
system infers to be the access pattern. This can be quite hardto in-
fer accurately when the workload consists of various independent
interleaved streams of access. In contrast, DHIS exploits explicit
hints from the higher layers to enable more accurate placement.
Also, while AutoRAID only addresses one dimension in this opti-
mization space (namely, choosing RAID levels based on whether
data is hot or cold), we have shown in this paper that there arevari-
ous other attributes to be considered while deciding on an efficient
layout and caching strategy.

Another approach that has been explored to address the prob-
lem of choosing the right RAID policies is to export information
from the RAID system to the higher layers. ExRAID [6] is an ex-
ample of a system in this category. By exposing fault boundaries
and redundancy information to the file system, ExRAID allowed
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the file system to tune its placement to match its expectations on
the characteristics of the data. RAID systems in the industry also
adopt a somewhat similar strategy where the volume manager en-
ables creating multiple volumes per RAID level. One could imag-
ine that a file system or database system could then implementcus-
tom policies by laying out data in the right volume. RAIF [12]
is one such approach. A problem with that approach is that it re-
quires the higher levels to understand the specifics of the range of
policies and mechanisms the storage system supports. Researchers
have also tried to automate this volume configuration based on of-
fline trace analysis on the workload [2, 3]. However, given the
increasing complexity of storage systems and the prevalence of a
wide variety of policies for storage layout, this approach is harder
to scale. For example, NetApp systems use a form of double-failure
protection called Row-Diagonal parity [5] and there are other im-
plementations of RAID6 [11]. Instead, by abstracting higher level
data characteristics through well-defined attributes, we bridge this
gap without creating a dependency between the file system andthe
storage system.

Application-level hints can be processed by runtime libraries [21]
over native storage interfaces. However, this architecture requires
runtime libraries for individual storage resources and is well-suited
for cases where the storage resources are distributed.

More recently, there has been work on automatically inferring
knowledge about higher-level operations and data structures by us-
ing semantic knowledge about the data [4, 17]. For example, se-
mantic disks are capable of inferring that a particular set of blocks
are metadata blocks and thus place those blocks in NVRAM for
better write performance [17]. One drawback with the inference
approach is its complexity and the difficulty of getting suchinfer-
ence always correct. With the more explicit attributes, DHIS can
utilize a wider variety of higher-level information; for instance, the
NVRAM caching in DHIS extends beyond just file system meta-
data, and includes arbitrary user-level data that has access patterns
that are likely to benefit from NVRAM caching.

7. CONCLUSIONS
The wide variety of techniques available to manage storage lay-

out and reliability results in a difficult question for both storage
vendors and developers of higher layers that interact with the stor-
age system: which of these policies should be chosen? Our contri-
butions to address this problem are as follows. First, we presented
a new design choice for making optimal data placement decisions
in an online fashion. By making intelligent use of the different
attributes on data usage and importance, we have shown that a
RAID system can achieve much better efficiency in its layout poli-
cies while remaining transparent to higher layers. File systems and
other higher level layers simply inform the storage system about
what they already know about the data, without worrying about
how the storage system would use that information, thus freeing
higher layers from having to reason about the internals of the stor-
age system. Second, we used a generic disk functionality proto-
typing framework DPROTO to implement a hierarchical storage
system, DHIS. DPROTO isolates key resources, CPU and memory,
between disk-level functionality and host applications enabling ef-
fective prototyping and benchmarking. Finally, we have shown
through an OLTP macro-benchmark and several micro-benchmarks
that DHIS achieves benefits that are close to what can be achieved
ideally with optimal data placement.

8. FUTURE WORK
In the future, we plan to extend this work with new attributesand

optimizations including more intelligent block placementwithin a
specific RAID level, by using higher level hints about projected file
growth and more fine-grained file life-time characteristics. We also
plan to implement policies for placement in finer-grained reliability
levels in RAID, and consider emerging storage hardware suchas
flash memory.
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